
A Real-time Content Adaptation Framework for
Exploiting ROI Scalability in H.264/AVC

Peter Lambert, Davy De Schrijver, Davy Van Deursen, Wesley De Neve, Yves
Dhondt, and Rik Van de Walle

Department of Electronics and Information Systems – Multimedia Lab
Ghent University – IBBT

Gaston Crommenlaan 8 bus 201, B-9050 Ledeberg-Ghent, Belgium
peter.lambert@ugent.be

Abstract. In many application scenarios, the use of Regions of Interest
(ROIs) within video sequences is a useful concept. It is shown in this
paper how Flexible Macroblock Ordering (FMO), defined in H.264/AVC
as an error resilience tool, can be used for the coding arbitrary-shaped
ROIs. In order to exploit the coding of ROIs in an H.264/AVC bitstream,
a description-driven content adaptation framework is introduced that is
able to extract the ROIs of a given bitstream.

The results of a series of tests indicate that the ROI extraction process
significantly reduces the bit rate of the bitstreams and increases the
decoding speed. In case of a fixed camera and a static background, the
impact of this reduction on the visual quality of the video sequence is
negligible. Regarding the adaptation framework itself, it is shown that
in all cases, the framework operates in real time and that it is suited for
streaming scenarios by design.

1 Introduction

In many application scenarios, the use of Regions of Interest (ROIs) within video
sequences is a useful concept. A ROI typically is a region within the video pane
containing visual information that is more interesting than the other parts of the
video pane. In the case of multiple ROIs, they can be equally important or they
might have different levels of importance. The remaining area is often called the
background. Several image or video coding standards (e.g., JPEG2000 [1] or the
Fine Granularity Scalability (FGS) Profile of MPEG-4 Visual [2]) have adopted
the idea of ROIs and they often provide functionality to code the ROIs at a
higher quality level.

The use of ROIs is, for instance, found in surveillance applications. For in-
stance, more and more cameras are developed that capture 360 degrees of video
footage with very high resolution pictures. Because it is often impossible to
transmit a coded representation of the entire video sequence, one or more ROIs
are defined and only a coded version of these smaller areas is transmitted. The
position of the ROIs within the picture can mostly be adjusted in real time by

an operator. The latter avoids the delays that are introduced by traditional Pan
Tilt Zoom (PTZ) cameras.

The currently ongoing standardization efforts of the Joint Video Team re-
garding Scalable Video Coding (SVC) [3] indicate that there is a clear interest
in ROI coding and ROI-based scalability [4, 5]. The requirements document of
SVC [6] gives some more details about various applications in which ROI cod-
ing and ROI-based scalability can be applied, including video surveillance and
multi-point video conferencing.

This paper concentrates on the exploitation of ROI coding within the
H.264/AVC specification [7]. The H.264/AVC standard does not explicitly define
tools for ROI coding, but the authors have shown that the use of slice groups
(also called Flexible Macroblock Ordering or FMO) enables one to code ROIs
into an H.264/AVC bitstream. Nothwithstanding the fact that FMO is primar-
ily an error resilience tool, it was illustrated in [8] that it can be the basis for
content adaptation. The combination of ROI coding and a description-driven
framework for the extraction of ROIs (ROI scalability as content adaptation) is
the main topic of this paper. On top of this, it will be shown that the entire
content adaptation framework operates in real time and that it is suited for live
streaming scenarios. This technique illustrates the possibilities that are offered
by the single-layered H.264/AVC specification for content adaptation. A sim-
ilar technique for the exploitation of multi-layered temporal scalability within
H.264/AVC is described in [9].

The rest of this paper is organized as follows. Section 2 describes the two main
enabling technologies: H.264/AVC FMO and the XML-driven content adapta-
tion framework. In Sect. 3, two methods for ROI extraction are introduced (back-
ground slice deletion and placeholder slice insertion). The results of a series of
tests regarding the proposed content adaptation framework are given in Sect. 4
and, finally, Sect. 5 concludes this paper.

2 Enabling Technologies

2.1 ROI Coding with H.264/AVC FMO

FMO is a novel tool for error resilience that is introduced in the H.264/AVC
specification. By using FMO, it is possible to code the macroblocks of a picture
in another order than the default raster scan order (i.e., row per row). One
can define up to eight so-called slice groups and every macroblock can freely be
assigned to one of these slice groups. This assignment results in a MacroBlock
Allocation map (MBAmap), which is coded in a Picture Parameter Set (PPS). In
fact, the set of slice groups constitute a set partition1 of the set of macroblocks of
a picture. An H.264/AVC encoder will encode one slice group after another and
the macroblocks that are part of the slice group in question are coded in raster
scan order (within that particular slice group). Apart from this, the concept of

1 In a strictly mathematical sense.

(traditional) slices remains the same: macroblocks are grouped into slices, the
latter being spatially limited to one of the slice groups.

Because the coding of the entire MBAmap might introduce a considerable
amount of overhead, the H.264/AVC standard has specified 6 predefined types
of FMO. The MBAmap for these types has a specific pattern that can be coded
much more efficiently. FMO type 2, which is used in this paper, indicates that
the slice groups are rectangular regions within the video pane, as shown in Fig.
1(a). This type of FMO only requires two numbers to be coded per rectangular
slice group. These regions will be considered Regions of Interest. Note that the
macroblocks that are left over also constitute a (non-rectangular) slice group.
For a thorough overview of H.264/AVC FMO, the reader is refered to [10].

(a) H.264/AVC FMO type 2

slice group 0

slice group 1
slice group 2

(b) H.264/AVC FMO type 6

Fig. 1: ROI coding with H.264/AVC FMO

In H.264/AVC, the slice group configuration is coded in a PPS which contains
a number of syntax elements that are the same for a certain number of succes-
sive pictures (e.g., the entropy coding scheme). Further, every slice contains a
reference to the PPS that is into effect. Since the ROI configuration can change
in the course of time (e.g., the relative position of a ROI changes, or a ROI
appears or disappears), it is required to code a PPS into the bitstream in order
to reflect every change of the ROI configuration. In such a PPS, there are four
syntax elements that are important in the context of this paper. The number of
slice groups is coded by means of num slice groups minus1 which means that
this number denotes the number of ROIs that are present in the bitstream (the
‘background’ is also a slice group). The syntax element slice group map type
will always be 2 since we only focus on FMO type 2. Every rectangular slice
group is defined by the macroblock numbers of its top left and its bottom right
macroblock. These two numbers are coded in a PPS by means of the syntax
elements top left iGroup and bottom right iGroup.

Finally, it should be noted that it is possible to define non-rectangular ROIs
in H.264/AVC. Indeed, one can always use FMO type 6 (explicit coding of the
MBAmap) to define arbitrary-shaped sets of macroblocks, as depicted in Fig.
1(b). The content adaptation framework, as presented in this paper, is able to
process FMO type 6; the only modification that is needed, is the algorithm that
decides if a slice is part of a ROI or not (see Sect. 3.1).

2.2 XML-driven Content Adaptation Framework

The process of content adaptation based on (pseudo) scalable properties of a
bitstream typically requires the removal of certain data chunks, the replacement
of certain data blocks, the modification of certain syntax elements, or a combina-
tion of these three. One way to accomplish this, is to make use of automatically
generated XML descriptions (called Bitstream Syntax Descriptions, or BSDs)
that contain high-level information about the bitstreams. For the generation of
a BSD, only a limited knowledge is required about the syntax of given bitstream.
In stead of performing the adaptations directly on the bitstreams, the generated
BSDs can be transformed in such a way that it reflects the desired adaptation.
The last step is to automatically generate an adapted bitstream based on the
transformed description.

The MPEG-21 Bitstream Syntax Description Language (BSDL) framework
is an example of a framework that provides the necessary functional blocks that
are described above. However, it is described in literature that some parts of this
framework have performance issues [11, 12]. As a result, it is (yet) less suited to be
deployed in real-life scenarios which require real-time behavior. Another example
is the Formal Language for Audio-Visual Object Representation, extended with
XML features (XFlavor [13]). The major drawback of the latter is the fact that
the generated descriptions are too large because it is required to fully parse
the bitstream up to the lowest level (in fact, all information of the bitstream
is present in its description). In order to combine the strenghts of both BSDL
and XFlavor, the authors have developed BFlavor, which is a modification of
XFlavor in order to be able to output BSDL-compatible descriptions [14].

BFlavor allows to describe the structure of a media resource in a C++-alike
manner. It is subsequently possible to automatically create a BS Schema, as well
as a code base for a parser that is able to generate a BSD that is compliant with
the corresponding BS Schema. This implies that the generated BSDs can be
further processed by the upstream tools in a BSDL-based adaptation chain. In
Fig. 2, an overview is given of the BSD-oriented content adaptation framework,
as employed in this paper. It is important to note that the adaptation (see
‘filter(s)’ in Fig. 2) is the only step in the chain of actions that is not automated.
The technology that is used to transform the BSDs is Streaming Transformations
for XML (STX, pronounced ‘stacks’) [15]. The internals of the transformation
(embodying the actual ROI scalability) are the subject matter of Sect. 3.

original bitstream
BFlavor-generated

parser
BSD

filter(s)

adapted
BSD

BSDtoBinadapted bitstream

adaptation

decision

taking engine

<bitstream>
<header>0 24</header>
<slice inROI=“false”>25 2637</slice>
<slice inROI=“true”>2663 746</slice>
<slice inROI=“true”>3410 1451</slice>
<slice inROI=“false”>4862 857</slice>

</bitstream>

<bitstream>
<header>0 24</header>
<slice inROI=“true”>2663 746</slice>
<slice inROI=“true”>3410 1451</slice>

</bitstream>

<stx:transform>
<stx:if test="$inROI">

<stx:copy select=“.”/>
</stx:if>

</stx:transform>

original bitstream
BFlavor-generated

parser
BSD

filter(s)

adapted
BSD

BSDtoBinadapted bitstream

adaptation

decision

taking engine

<bitstream>
<header>0 24</header>
<slice inROI=“false”>25 2637</slice>
<slice inROI=“true”>2663 746</slice>
<slice inROI=“true”>3410 1451</slice>
<slice inROI=“false”>4862 857</slice>

</bitstream>

<bitstream>
<header>0 24</header>
<slice inROI=“true”>2663 746</slice>
<slice inROI=“true”>3410 1451</slice>

</bitstream>

<stx:transform>
<stx:if test="$inROI">

<stx:copy select=“.”/>
</stx:if>

</stx:transform>

Fig. 2: XML-driven framework for video content adaptation

3 ROI Extraction

In the context of this paper, every ROI is a slice group (containing one or more
slices). Consequently, the extraction of the ROIs comes down to the identification
of those slices that are part of one of the ROIs. Afterwards, the ‘background’ can
either be dropped or replaced with other coded data. These two approaches are
described in the following two subsections. The bandwith required to transmit
a bitstream that is disposed of its non-ROI parts will be much lower. On top of
this, the use of placeholder slices (see Sect. 3.2) will result in a speed-up of the
receiving decoder and a decrease in the decoder’s complexity.

3.1 Non-ROI Slice Deletion

For every slice in the coded video sequence, one has to decide whether or not
it is part of one of the rectangular slice groups. Based on the syntax element
first mb in slice (coded in every slice header), this can be done in the fol-
lowing manner. Let Ri be the ROIs and let S be a slice having the macroblock
with number FMBS as its first macroblock (i.e., FMBS = first mb in slice).
Further, let TLi and BRi be the macroblock numbers of the top left and bot-
tom right macrobock of ROI Ri. Last, let W be the width of a picture in terms
of macroblocks (coded by means of pic width in mbs minus1 in a Sequence
Parameter Set). Then, S is part of Ri if

(TLi mod W ≤ FMBS mod W) ∧ (FMBS mod W ≤ BRi mod W)
∧ (TLi div W ≤ FMBS div W) ∧ (FMBS div W ≤ BRi div W)

In this expression, the div operator denotes the integer devision with trunca-
tion and the mod operator denotes the traditional modulo operation. Based on
a BSD that is generated by BFlavor, this calculation can be done inside a STX
filter. The latter will then discard all parts of the BSD that are related to slices
for which the above calculation evaluates to false for all i. Based on this trans-
formed BSD, the BSDtoBin Parser can generate the actual adapted bitstream.
It is important to note that a bitstream that is generated by this approach will
no longer comply with the H.264/AVC standard as the latter requires that all
slice groups are present in an H.264/AVC bitstream. Despite the fact that only
minor modifications of an H.264/AVC decoder are needed for the correct decod-
ing of such a bitstream, this may be considered a disadvantage of the procedure
described above.

3.2 Placeholder Slice Insertion

In order to avoid the disadvantages described in the previous subsection, the
authors propose the use of placeholder slices. In this approach, coded P and
B slices are no longer dropped, but they are replaced by other coded data. A
placeholder slice can be defined as a slice that is identical to the corresponding
area of a certain reference picture, or that is reconstructed by relying on a well-
defined interpolation process between different reference pictures [16]. Based on
the provisions of the H.264/AVC specification, the placeholder slices, as proposed
here, are implemented by means of P slices in which all macroblocks are marked
as skipped (hereafter called ‘skipped P slices’). This subsection will explain how
this substitution can be accomplished in the XML-driven content adaptation
framework.

The most straightforward case is replacing coded P slices (both reference
and non-reference) with skipped P slices. Since the slice header can be kept un-
changed, only the slice data are to be substituted. Only two syntax elements are
needed to code the slice data for a skipped P slice: mb skip run to indicate the
number of macroblocks that are to be skipped and rbsp slice trailing bits
in order to get byte-aligned in the bitstream. An excerpt of both the original
and adapted BSD of a P slice is given in Fig. 3(a) where some simplifications are
introduced to improve readability and in order to meet the place constraints.

In order to replace a coded B slice with a skipped P slice, the substitution
process is more complex because of the different nature, and hence header syn-
tax, of P and B slices. The syntax element slice type has to be changed from
1 or 6 (B slice) to 0 (P slice). Next to this, the slice header of a B slice con-
tains a number of syntax elements that cannot appear in a P slice, and they
need to be removed. To summarize, the STX filter which adapts the BSDs will
remove the following syntax elements (and the syntax elements that are implied
by them): direct spatial mv pred flag, num ref idx l1 active minus1,
ref pic list reordering flag l1, luma weight l1 flag (if applicable), and
chroma weight l1 flag (if applicable).

Regarding the slice data, the same process can be applied as in the case
of coded P slices. An example illustrating this scenario is given in Fig. 3(b).

---------------- original description ---------------

<coded_slice_of_a_non_IDR_picture >

<slice_layer_without_partitioning_rbsp >

<slice_header >

<first_mb_in_slice >0</first_mb_in_slice >

<slice_type >5</ slice_type >

<pic_parameter_set_id >0</pic_p... >

<frame_num >1</frame_num >

<!-- ... -->

</slice_header >

<slice_data >

<bit_stuffing >7</ bit_stuffing >

<slice_payload >7875 1177</slice_payload >

</slice_data >

</slice_layer_without_partitioning_rbsp >

</coded_slice_of_a_non_IDR_picture >

---------------- adapted description ----------------

<coded_slice_of_a_skipped_non_IDR_picture >

<skipped_slice_layer_without_partitioning_rbsp >

<slice_header >

<first_mb_in_slice >0</first_mb_in_slice >

<slice_type >5</ slice_type >

<pic_parameter_set_id >0</pic_p... >

<frame_num >1</frame_num >

<!-- ... -->

</slice_header >

<skipped_slice_data >

<mb_skip_run >108 </mb_skip_run >

</skipped_slice_data >

<rbsp_trailing_bits >

<rbsp_stop_one_bit >1</rbsp_stop_one_bit >

<rbsp_alignment_zero_bit >0</rbsp_a... >

</rbsp_trailing_bits >

</skipped_slice_layer_without_partitioning_rbsp >

</coded_slice_of_a_skipped_non_IDR_picture >

(a) P slice replaced by a skipped P slice

---------------- original description ---------------

<coded_slice_of_a_non_IDR_picture >

<slice_layer_without_partitioning_rbsp >

<slice_header >

<first_mb_in_slice >0</ first_mb_in_slice >

<slice_type >6</slice_type >

<pic_parameter_set_id >1</pic_parameter_set_id >

<frame_num >2</ frame_num >

<pic_order_cnt_lsb >2</ pic_order_cnt_lsb >

<direct_spatial_mv_pred_flag >1</direct... >

<num_ref_idx_active_override_flag >1</num ... >

<num_ref_idx_l0_active_minus1 >1</num ... >

<num_ref_idx_l1_active_minus1 >0</num ... >

<ref_pic_list_reordering_flag_l0 >0</ref ... >

<ref_pic_list_reordering_flag_l1 >0</ref ... >

<slice_qp_delta >2</slice_qp_delta >

</slice_header >

<slice_data >

<bit_stuffing >6</bit_stuffing >

<slice_payload >9543 851 </slice_payload >

</slice_data >

</ slice_layer_without_partitioning_rbsp >

</ coded_slice_of_a_non_IDR_picture >

---------------- adapted description ----------------

<coded_slice_of_a_skipped_non_IDR_picture >

<skipped_slice_layer_without_partitioning_rbsp >

<slice_header >

<first_mb_in_slice >0</ first_mb_in_slice >

<slice_type >0</slice_type >

<pic_parameter_set_id >1</pic_parameter_set_id >

<frame_num >2</ frame_num >

<pic_order_cnt_lsb >2</ pic_order_cnt_lsb >

<num_ref_idx_active_override_flag >1</num ... >

<num_ref_idx_l0_active_minus1 >1</num ... >

<ref_pic_list_reordering_flag_l0 >0</ref ... >

<slice_qp_delta >0</slice_qp_delta >

</slice_header >

<skipped_slice_data >

<mb_skip_run >264 </ mb_skip_run >

</skipped_slice_data >

<rbsp_trailing_bits >

<rbsp_stop_one_bit >1</ rbsp_stop_one_bit >

<rbsp_alignment_zero_bit >0</rbsp... >

</rbsp_trailing_bits >

</ skipped_slice_layer_without_partitioning_rbsp >

</ coded_slice_of_a_skipped_non_IDR_picture >

(b) B slice replaced by a skipped P slice

Fig. 3: XML-driven placeholder slice insertion

In order to save some additional bits, it is possible to change the value of the
syntax element slice qp delta to zero in all cases, as this value has no impact
on skipped macroblocks.

4 Results

In order to have some insight in the performance and the consequences of the
proposed architecture, a series of tests was set up. The measurements include the
impact of the adaptation process on the bitstream and on the receiving decoder.
Also an assessment of the performance of the overall adaptation framework is
given.

In the experiments, four video sequences were used: Crew (600 pictures with
a resolution of 1280 × 720), Hall Monitor, News, and Stefan (the latter three
having 300 pictures at CIF resolution). In each sequence, one or more ROIs were
manually defined: the moving persons in Hall Monitor and the bag that is left
behind by the left person; the heads of the two speakers in News; the tennis

player in Stefan; the first two persons of the crew and the rest of the crew as
a separate ROI in the Crew sequence. In all sequences, the ROIs are non-static
(moving, shrinking, or enlarging) and they may appear or dissappear.

These four sequences were encoded with a modified version of the H.264/AVC
reference software (JM 9.5) which allows to encode bitstreams with FMO config-
urations that vary in the course of time. This encoding was done once conform
the Baseline Profile and once conform the Extended Profile (the only differ-
ence here being the use of B slices). Other relevant encoding parameters are a
GOP length of 16, 2 consecutive B slice coded pictures (if applicable), and a
constant Quantization Parameter (QP) of 28. Some properties of the resulting
bitstreams are summarized in Table 1. In this table, also the impact of the adap-
tation process on the size of the bitstreams is given: sizep denotes the size of the
adapted bitstreams in which placeholder slices were inserted while sized denotes
the size of the adapted bitstreams of which all background P and B slices are
dropped.

Table 1: Bitstream characteristics (sizes in KB)

sequence # ROIs # PPSs # slices size sizep sized

IP crew 1–3 48 2020 9641 3448 3441
hall monitor 1–3 26 924 629 377 374
news 2 3 904 478 241 237
stefan 1 31 632 2071 948 945

IBBP crew 1–3 48 2020 9313 3507 3500
hall monitor 1–3 26 924 610 381 377
news 2 3 904 503 241 238
stefan 1 31 632 2286 1024 1021

The bitstream sizes clearly indicate that the adaptation process (i.e., ROI
extraction) considerably reduces the bit rate required to transmit a bitstream.
Both extraction methods (placeholder insertion and background deletion) yield
bit rate savings from 38% up to 64%. This reduction has in general a serious
impact on the quality of the decoded video sequence. Because the coded back-
ground P and B slices are discarded or replaced, a correct picture is only decoded
at the beginning of every GOP, resulting in bumpiness of the sequence in which
the ROIs are moving smoothly. However, because coded macroblocks inside a
ROI can have motion vectors pointing outside the ROIs, ‘incorrect’ decoded data
of the background can seep into the ROI which results in erroneous borders of
the ROI. This can be avoided by applying so-called constraint motion estima-
tion at the encoder so that motion vectors only point to the same slice group
the macroblock being predicted belongs to. ROIs that are coded in this way are
sometimes called isolated regions (this was not used in the tests).

With respect to the (negative) impact of the adaptation process on the re-
ceived visual quality, there are situations in which this impact is negligible. An
example of such a situation is the sequence Hall Monitor in which both the cam-
era and the background are static. The average PSNR-Y of the adapted version
is 36.7 dB whereas the unadapted version had an average PSNR-Y of 37.7 dB (or

38.0 dB in case B slices were used). When watching the adapted version, even
an expert viewer can hardly notice that the bitstream was subject of an adap-
tation process. In case of video conferencing or video surveillance applications,
this opens up new opportunities. For instance, bitstreams that are coded with
ROIs using H.264/AVC FMO can sustain a rather big decrease in available band-
width without any noticable quality loss. This, of course, on condition that the
transporting network first ‘drops’ the background packets. Alternatively, there
might be an active network node (implementing the adaptation framework as
presented in this paper) which adapts the bitstreams by removing or replacing
the coded information of the background.

Because the processing of P-skipped macroblocks requires less operations for
a decoder, it is expected that a decoder, receiving an adapted bitstream with
placeholder slices, operates faster compared to the case of decoding the original
bitstream. Indeed, for the decoding of a P-skipped macroblock, a decoder can rely
directly on its decoded picture buffer without performing any other calculations
such as motion compensation. Both the original and the adapted bitstreams were
decoded five times using the reference decoder (JM 10.2) in order to measure
the decoding speed. The average decoding speed for each bitstream is given in
Table 2.

Table 2: Impact on decoding speed (frames per second)

sequence original placeholders
IP crew 1.5 2.0

hall monitor 15.6 16.9
news 16.7 18.9
stefan 10.4 14.9

IBBP crew 1.1 1.3
hall monitor 13.8 17.0
news 14.3 17.5
stefan 9.5 14.4

As can be seen from this table, the decoding speed is positively affected in
all cases when placeholder slices are inserted by the adaptation process. The
decoding speed in the cases the background was dropped, depends to a great
extent on how a receiving decoder copes with non-arriving slices. If a decoder
does nothing in case of missing slices, the decoding speed should be higher than
the speeds of Table 2. If a decoder performs an error concealment algorithm,
the decoding speed will decrease if the applied algorithm is more complex than
decoding P-skipped macroblocks (e.g., spatial interpolation techniques).

The last part of this results section is about the performance of the over-
all adaptation framework. Both the memory consumption and the execution
speed are substantial factors for the successful deployment of such an adapta-
tion framework. Therefore, it is important to have an assessment of those factors
with respect to the three main components of the adaptation framework as pre-
sented in this paper: the generation of BSDs by a BFlavor-generated parser, the
transformation of BSDs using STX, and the generation of adapted bitstreams

by means of the BSDtoBin Parser. Regarding the memory consumption, it is
reported in literature that all components give evidence of a low memory foot-
print and a constant memory usage [11, 12]. As such, the proposed framework
satisfies the memory consumption requirements.

With respect to the execution times of the adaptation framework, every com-
ponent was executed 11 times both for the placeholder slice insertion method
and the background deletion. For all cases, the averages of the last 10 runs are
summarized in Table 3. This averaging eliminates possible start-up latencies due
to the fact that all components rely on a Java Virtual Machine as their execution
environment. In Table 3, the execution speed is given in terms of Network Ab-
straction Layer Units (NALUs) per second, as a NALU is the atomic parsing unit
within the framework. Note that the number of NALUs per picture depends on
the slice group configuration. Combining the execution speed of the individual
components for both content adaptation methods results in the overall execution
speed in terms of frames per second (fps), as denoted in the last two columns of
the table.

Table 3: Performance of the overall framework

NALUs per second total fps
sequence BFlavor STXp STXd BSDtoBinp BSDtoBind placeholders dropping
IP crew 1036.3 273.0 308.7 449.2 572.9 43.3 49.9

hall monitor 2151.1 235.4 272.2 340.3 422.9 46.7 54.9
news 2371.8 260.6 302.4 344.3 421.5 46.3 54.4
stefan 1084.5 199.8 264.6 272.2 347.4 49.4 62.4

IBBP crew 1038.7 221.1 245.5 397.2 497.2 37.1 42.1
hall monitor 2090.1 200.3 226.0 308.8 385.3 41.0 47.6
news 2306.4 249.2 284.5 311.7 381.1 43.4 50.5
stefan 1016.3 155.3 179.1 253.5 325.8 41.8 49.3

It is clear from this table that the proposed framework is capable to perform
the content adaptation in real time in all cases (see ‘total fps’). As would be
expected, the framework operates slower when performing the placeholder slice
insertion because this method requires a more complex transformation in the
XML domain. On top of that, the use of B slices also leads to a slow-down in
both methods. These two trends can be observed in each component. Notwith-
standing the fact that STX is a transformation language that overcomes most
performance issues that are encountered when using, for instance, Extensible
Stylesheet Language Transformation (XSLT), the transformation in the XML
domain still is the slowest component in the framework.

All components of the proposed framework are capable of operating in video
streaming scenarios. Indeed, both STX and BSDtoBin are entirely based on
SAX events. Although the BFlavor-generated parser currently reads from and
writes to a file, it can very easily be modified so that the generated classes use
adequate buffers. This streaming capability, and also the performance measure-
ments described above, prove that the proposed framework for the exploitation
of ROI scalability within the H.264/AVC specification is suited for real-time

video streaming scenarios. This, of course, provided that the identification of
the ROIs (motion detection and object tracking) is also done in real time by the
encoder.

5 Conclusions

In this paper, it was shown how ROI coding can be accomplished within the
H.264/AVC video coding specification by making use of Flexible Macroblock
Ordering. For the extraction of the ROIs (i.e., exploitation of ROI scalability), a
description-driven content adaptation framework was introduced that combines
the BFlavor framework for the generation of BSDs, STX for the transformation
of these BSDs, and the BSDtoBin Parser of the MPEG-21 BSDL framework
for the generation of adapted bitstreams. Two methods for ROI extraction were
implemented in this framework by means of a STX filter: removal of the non-
ROI parts of a bitstream and the replacement of the coded background with
placeholder slices.

Bitstreams that are adapted by this ROI extraction process have a signif-
icantly lower bit rate than the original version. While this has in general a
profound impact on the quality of the decoded video sequence, this impact is
marginal in case of a fixed camera and a static background. This observation
may lead to new opportunities in the domain of video surveillance or video con-
ferencing where the described approach can from the basis for certain levels of
QoS. Next to the decrease in bandwidth, the adaptation process has a positive
effect on the receiving decoder: because of the easy processing of placeholder
slices, the decoding speed increases.

It was shown that the content adaptation framework, as presented in this
paper, operates in real-time. Because each component of the framework is able
to function in case of actual streaming video, the framework is suited also suited
for live streaming video applications. As such, the framework can be deployed
in an active network node, for instance at the edge of two different networks.

Acknoledgements

The research activities as described in this paper were funded by Ghent Uni-
versity, the Interdisciplinary Institute for Broadband Technology (IBBT), the
Institute for the Promotion of Innovation by Science and Technology in Flanders
(IWT), the Fund for Scientific Research-Flanders (FWO-Flanders), the Belgian
Federal Science Policy Office (BFSPO), and the European Union.

References

1. Taubman, D., Marcellin, M.: JPEG2000 : Image Compression Fundamentals, Stan-
dards and Practice. Kluwer Academic Publishers (2002)

2. Li, W.: Overview of fine granularity scalability in MPEG-4 video standard. IEEE
Trans. Circuits Syst. Video Technol. 11 (2001) 301–317

3. Reichel, J., Schwarz, H., Wien, M.: Joint scalable video model JSVM-4. JVT-Q202,
http://ftp3.itu.ch/av-arch/jvt-site/2005 10 Nice/JVT-Q202.zip (2005)

4. Yin, P., Boyce, J., Pandit, P.: FMO and ROI scalability. JVT-Q029,
http://ftp3.itu.ch/av-arch/jvt-site/2005 10 Nice/JVT-Q029.doc (2005)

5. Thang, T.C., Kim, D., Bae, T.M., Kang, J.W., Ro, Y.M., Kim, J.G.: Show
case of ROI extraction using scalability information SEI message. JVT-Q077,
http://ftp3.itu.ch/av-arch/jvt-site/2005 10 Nice/JVT-Q077.doc (2005)

6. ISO/IEC JTC1/SC29/WG11, .: Applications and requirements for scalable video
coding. N6880, http://www.chiariglione.org/mpeg/working documents/mpeg-
04/svc/requirements.zip (2005)

7. Wiegand, T., Sullivan, G.J., Bjøntegaard, G., Luthra, A.: Overview of the
H.264/AVC video coding standard. IEEE Trans. Circuits Syst. Video Technol.
13 (2003) 560–576

8. Dhondt, Y., Lambert, P., Notebaert, S., Van de Walle, R.: Flexible macroblock
ordering as a content adaptation tool in H.264/AVC. In: Proceedings of the
SPIE/Optics East conference, Boston (2005)

9. De Neve, W., Van Deursen, D., De Schrijver, D., De Wolf, K., Van de Walle,
R.: Using bitstream structure descriptions for the exploitation of multi-layered
temporal scalability in H.264/AVC’s base specification. Lecture Notes in Computer
Science, PCM 2005 (2005) 641–652

10. Lambert, P., De Neve, W., Dhondt, Y., Van de Walle, R.: Flexible macroblock or-
dering in H.264/AVC. Journal of Visual Communication and Image Representation
17 (2006) 358–375

11. Devillers, S., Timmerer, C., Heuer, J., Hellwagner, H.: Bitstream syntax
description-based adaptation in streaming and constrained environments. IEEE
Trans. Multimedia 7 (2005) 463–470

12. De Schrijver, D., Poppe, C., Lerouge, S., De Neve, W., Van de Walle, R.: MPEG-
21 bitstream syntax descriptions for scalable video codecs. Multimedia Systems
article in press (2006)

13. Hong, D., Eleftheriadis, A.: Xflavor: bridging bits and objects in media represen-
tation. In: Proceedings of the International Conference on Multimedia and Expo
(ICME), Lausanne, Switzerland (2002)

14. Van Deursen, D., De Neve, W., De Schrijver, D., Van de Walle, R.: BFlavor:
an optimized XML-based framework for multimedia content customization. In:
Proceedings of the Picture Coding Symposium 2006 (PCS 2006), accepted for
publication (2006)

15. Cimprich, P.: Streaming transformations for XML (STX) version 1.0 working draft.
http://stx.sourceforge.net/documents/spec-stx-20040701.html (2004)

16. De Neve, W., De Schrijver, D., Van de Walle, D., Lambert, P., Van de Walle,
R.: Description-based substitution methods for emulating temporal scalability in
state-of-the-art video coding formats. In: Proceedings of WIAMIS, Korea, accepted
for publication (2006)

